Abstract

This article reports the ease and novel method to synthesise CeO2 nanoparticle in PVA polymer matrix. The optical, structural, thermal, mechanical, morphological, dielectric and electrochemical properties of the prepared films were understood by various charecterisation techniques such as UV–Visible, XRD, DSC, AFM, Impedance analyser, cyclic voltameter. The direct band gap for pure PVA is 5.426 eV and decreased to 4.278 eV. The indirect band gap values decreased from 4.86 to 2.04 eV. The degree of crystallinity for pure PVA is about 54% and increases to 79% for 15 wt% ACS doped PVA composite. Increase in Tg is observed with increase in doping concentration and is fitted to WLF–VTF model to evaluate dynamic fragility and apparent activation energy. The Non-Debye type of variation in dielectric constant with respect to frequency is observed. From the variation observed for M′ values is the indication of the presence of electrode polarization effect. The s value varied from 0.7 to 1.6, Therefore, the conductivity phenomenon explained on the NCL/SLPL type ion hopping mechanism. The prepared polymer electrolyte shows proton conductivity of the order of 10−3 Scm−1. The cyclic voltammograms shows an ideal capacitive behavior with good electrochemical stability. This article discuss about fundamentals of conducting phenomenon and its applicability in portable and flexible energy storage devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call