Abstract
Sm2O3 doped boro-zinc-vanadate glass systems were synthesised by following the melt quenching method. XRD patterns indicated largely non-crystalline nature with few nano-crystallites. Room temperature density was measured. Molar volume and various polaron parameters were estimated. Density and molar volume are found to vary non-linearly with samarium concentration. Conductivity has been measured by two probe technique for temperature range 303K - 573K. High temperature conductivity obeyed the small polaron hopping (SPH) theory. Activation energy for conduction in the temperature regime of small polaron theory is found to vary from 0.249 eV to 0.368 eV non-linearly with Sm2O3 concentration. The conductivity data at low temperature deviated has been looked into using Mott’s VRH model and the density of states at Fermi level were determined. Shimakawa’s multiphonon tunnelling model has also been applied to the low temperature conductivity and found linearity between logarithmic conductivity, ln(σ) and logarithmic temperature ln(T) as predicted by the model. The temperature exponent values obtained from Shimakawa’s model fit are found to be in good agreement with literature. Therefore, it is concluded that at low temperature, carrier multiphonon tunnelling is the charge transport mechanism in the present glasses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.