Abstract
With significant emphasis on reducing the turbulence in the bath and the need for effective distribution of metal along the roller length in twin-roll casting, a novel submerged entry nozzle (SEN) configuration with two “gap regions” was provided. The “gap regions” of the new SEN divide the bath into two parts, the “upper melt bath” (casting region) and the “lower melt bath” (rolling region). The newly designed SEN was tested by using both full-scale water modeling experiments and numerical simulations. Results demonstrated that the turbulence could only be found near the rotating roller surfaces. The “gap regions” can make the near-wall flows more uniform. They can also prevent the instabilities in the “upper melt bath” to be transferred to the “lower melt bath”, thus improving the stability of the process. Moreover, the novel SEN can stabilize the meniscus where the initial solidification occurs. This is achieved by increasing the SEN immersion depth, which in turn, can enlarge the volume of the upper part of the bath.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.