Abstract

We present analyses and results from both narrowband photometry and CCD imaging of Comet 81P/Wild 2 from multiple apparitions, obtained in support of the Stardust mission. These data include photometric measurements from 12 days before the encounter and imaging from 3 days after. Using narrowband photometry from the different apparitions, we analyzed the dust and gas production rates as a function of heliocentric distance, finding a substantial seasonal effect where the production of OH, NH, and dust peaks 11–12 weeks before perihelion. The CN, C 2, and C 3 production show no such asymmetry, suggesting that there may be heterogeneities among different sources on the nucleus. The water production peaked at a level of approximately 1.1 × 10 28 molecule s −1 in 1997. A comparison of the relative abundances of minor gas species places Wild 2 in the “depleted” category in the A'Hearn et al. (1995, Icarus 118, 223) taxonomic classifications. Continuum measurements at multiple wavelengths indicate that the comet has a low dust-to-gas ratio, with moderately reddened dust. In our images we see a dust tail, an anti-tail and two well-defined jets. The primary jet, which persists for several months and is roughly aligned with the spin axis, has a source latitude > + 75 ° , while the secondary jet is located on the opposite hemisphere between − 37 ° and − 62 ° . We used the apparent position angle of the primary jet to determine the pole orientation, α = 281 ± 5 ° , δ = + 13 ± 7 ° , and surmise that the nucleus is likely in a state of simple rotation. The primary source is continuously illuminated when Wild 2 is inbound and turns away from the Sun at about the time that the comet reaches perihelion, explaining the seasonal effects in the production rates. We measured lightcurves on several observing runs but saw no significant modulation, so no constraints can be set on the rotation rate. Images at different wavelengths show that the jets have the same colors as the dust in other regions in the coma and tail, indicating that the grain properties are similar throughout the coma. Radial profiles of the coma were measured in various directions on a number of different observing runs, and we discuss the findings from these measurements. Finally, we compare our results with other published data and attempt to predict future times at which observations should be obtained to help constrain additional properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.