Abstract

Solid oxide fuel cells (SOFCs) are efficient yet environmentally benign devices that can convert chemical energy into electrical energy and heat for large scale of applications. However, higher operating temperature of this device limits the selection of proper materials to be used as electrode and electrolyte as well as sacrifices the durability. Thus, it is desirable to develop materials with superior electrochemical performance at intermediate temperature (600-900 oC) for SOFC. LaSrCoFeO3 (LSCF) doped with CuO is an attracting yet promising cathode material for IT-SOFC owing to the distinguish properties including high electrical conductivity and high catalytic activity for the oxygen reduction reaction. This work investigates the influence of the synthesis route which are sloid state route and sol-gel route towards chemical and physical properties of composite LSCF-CuO. The samples were synthesized at different temperature ranging from 600 oC to 900 oC for each route respectively. XRD results showed high purity of as-synthesized samples while in the meantime increased in crystallinity has been observed as increased in calcining temperature indicating bigger crystal size after calcined at 900 oC. SEM images showed LSCF-CuO particles tends to expand as the calcining temperature increased. Meanwhile, from TGA results it is clear to conclude that LSCF-CuO loss its weight significantly after calcined at designed temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.