Abstract

BackgroundBond strength of orthodontic composite is strongly influenced by molecular and structural mechanisms. Aim of this in vitro study was to compare bond strength of light-cure orthodontic composites by measuring debonding forces and evaluating locations of bond failure. Investigations on chemical compositions clarified adhesive behaviors and abilities, exploring effects of ageing processes in this junction materials.MethodsTwelve enamel discs, from human premolars, were randomly coupled to one orthodontic adhesive system (Transbond XT™ 3 M UNITEK, USA, Light-Cure Orthodontic Paste, LEONE, Italy and Bisco Ortho Bracket Paste LC, BISCO, Illinois) and underwent to Shear Bond Strength test. Metallic brackets were bonded to twenty-seven human premolar, with one of the adhesive systems, to quantify, at FE-SEM magnifications, after debonding, the residual material on enamel and bracket base surfaces. Raman Spectroscopy analysis was performed on eight discs of each composites to investigate on chemical compositions, before and after accelerated aging procedures in human saliva and sugary drink.ResultsOrthodontic adhesive systems showed similar strength of adhesion to enamel. The breakage of adhesive-adherent bond occurs in TXT at enamel-adhesive interface while in Bisco and Leone at adhesive-bracket interface. Accelerated in vitro aging demonstrated good physical–chemical stability for all composites, Bisco only, was weakly contaminated with respect to the other materials.ConclusionA similar, clinically adequate and acceptable bond strength to enamel for debonding maneuvers was recorded in all orthodontic adhesive systems under examination. No significant chemical alterations are recorded, even in highly critical situations, not altering the initial mechanical properties of materials.

Highlights

  • Bond strength of orthodontic composite is strongly influenced by molecular and structural mechanisms

  • Shear bond strength (SBS) test results The collected data have been summarized in Table 3, which indicates, for each orthodontic adhesive system under examination, the SBS values, expressed in newton (N)

  • Breakage of the adhesiveadherent bond occurs for Transbond XTTM light cure adhesive (TXT) at the enamel-adhesive interface and for Light-cure orthodontic paste (Bisco) and Bisco ortho bracket paste LC (Leone), it occurs mainly at the adhesive-bracket interface

Read more

Summary

Introduction

Bond strength of orthodontic composite is strongly influenced by molecular and structural mechanisms. Aim of this in vitro study was to compare bond strength of light-cure orthodontic composites by measuring debonding forces and evaluating locations of bond failure. It should allow an extremely easy and safe manual detachment of the bracket. This avoids the onset of permanent damage to the dental enamel and/or the persistence of residual material in situ, which is commonly removed mechanically with some manoeuvres, as drilling or air abrasion, able to produce alterations in the roughness of the tooth surface [2]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call