Abstract

Valle de Bravo (VB) is a tropical reservoir located (19°21′30″ N, 100°11′00″ W) in the highlands of Mexico. The reservoir is daily swept by strong (7.4 m s−1 mean speed) diurnal (12:00–19:00 h) winds that blow along its two main arms. As expected from its fetch (6.9 km) and its depth (21.1 m mean), the reservoir behaves as a warm monomictic water body. During 2001, VB was stratified from February to October, and well mixed from November to January. Its mean temperature was 19.9°C; the maximum found was 23.8°C in the epilimnion, while a minimum of 17.8°C was registered during mixing. VB exhibited a thermal regime similar to other water bodies of the Mexican tropical highlands, except for a steady increase of its hypolimnetic temperature during stratification, which is attributed to entrainment of epilimnetic water into the hypolimnion. During stratification, the hypolimnion was anoxic, while the whole water column remained under-saturated (60%) during mixing. The flushing time is 2.2 years. Mineralization and total alkalinity are low, which allows strong changes in pH. Ammonia remained low (2.4 μmol l−1 mean) in the epilimnion, but reached up to 60 μmol l−1 in the hypolimnion. Soluble reactive phosphorous had a mean of 0.28 μmol l−1 in the epilimnion and a mean of 1.25 μmol l−1 in the hypolimnion. Nitrate exhibited maxima (up to 21 μmol l−1) during mixing, and also in the metalimnion (2 μmol l−1) during stratification. Low dissolved inorganic nitrogen indicated nitrogen limitation during stratification. Eutrophication is an emerging problem in VB, where cyanobacteria dominate during stratification. At VB chlorophyll a is low during mixing (mean of 9 μg l−1), and high during stratification (mean 21 μg l−1), when blooms (up to 88 μg l−1) are frequent. This pattern is similar to that found in other eutrophic tropical water bodies. We propose that in VB the wind regime causes vertical displacements of the thermocline (0.58–1.10 m hr−1) and boundary mixing, enhancing the productivity during the stratification period in this tropical reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call