Abstract

SINCE the discovery of fullerenes1, efforts have been made to trap metal atoms inside fullerene cages2, and both endohedral3,4 and exohedral5,6 metallofullerenes have been synthesized. There is, however, a third possibility: a 'networked' metallofullerene, where the metal atom is incorporated into the carbon cage. Here we report the results of experiments to study the structure and reactivity of gas-phase fullerenes doped with niobium (NbCn+ with n = 28–50). These experiments, which use injected-ion drift-tube tech-niques, indicate that for fullerenes containing an even number of carbon atoms the metal is endohedral, but for fullerenes with an odd number of carbon atoms, the niobium metal is bound as a part of the carbon cage. Thus, networked metallofullerenes appear to be a stable class of metallofullerene. We suggest that such metallo-fullerenes can form if the metal atom retains sufficient electron density to form several strong covalent metal–carbon bonds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.