Abstract
Central venous catheters are widely used in clinical practice; however, complications such as venous thrombosis or infection are frequent. The physical and biological effects of a coating procedure designed to improve the blood-contacting properties of polyurethane central venous catheters (CVCs) were studied. The surface atomic composition of poly(vinyl pyrrolidone) (PVP)-coated or uncoated Pellethane ® single lumen CVCs was characterized by electron spectroscopy for chemical analysis (ESCA), which confirmed the presence of an oxygen-rich PVP layer on the former material. Topological analysis of both single and triple lumen CVCs by scanning force microscopy (SFM) revealed a very smooth surface in PVP-coated catheters compared to the more frequent surface irregularities found either in uncoated Pellethane ® or in four additional randomly selected, commercially available triple lumen polyurethane CVCs. The PVP-coated Pellethane ® showed a strong reduction in either fibrinogen or fibronectin adsorption compared to all other PVP-free polyurethane CVCs. This decreased protein adsorption led to a proportional reduction in protein-mediated adhesion of either Staphylococcus aureus or Staphylococcus epidermidis and in the binding of a monoclonal antibody directed against the cell-binding domain of fibronectin. Increased surface smoothness and hydrophilic properties of polyurethane CVCs might decrease the risk of bacterial colonization and infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.