Abstract

The effects of physical aging on fracture and yielding behavior are polycarbonate are considered. Two groups of Bisphenol A-based polycarbonate, consisted of extruded PC sheets (thickness of 0.25 mm) and injection molded PC bars (thickness of 3.18 mm) are used. These samples were annealed at various temperatures ranging from 60 to 120 °C, for different times varying up to 240 h. For PC sheets the essential work of fracture (EWF) method was used to analyze fracture behavior. The results are compared to the strain energy density with aging time and aging temperature in the ranges investigated. This effect is confirmed by the change in fracture toughness, as measured by three-point bending tests. The concept of fictive temperature ( T f) was used to characterize the degree of aging in the sample. T f of a glass in an aged state at a time t is defined as the temperature at which the volume would be equal to the equilibrium volume at T f if the sample were instantaneously removed to that temperature. Differential scanning calorimetry (DSC) was used to determine T f. The variations of T f with aging time and aging temperature are in agreement with both the strain energy density measurement and the three-point bending tests. These results contradict the effects of aging on fracture toughness observed by the essential work of fracture approach. The latter showed anomalous regions of increasing fracture toughness with aging, leading to spurious conclusions. The brittle–ductile transition in fracture behavior is analyzed by an activation energy approach. Aging increases the brittle–ductile transition temperature and the effect is more pronounced for the lower molecular-weight sample. Fracture tests also showed a decrease in the entropy with aging, confirming the results observed previously from tension and compression tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.