Abstract
ObjectivesThe influence of physical activity (PA) on the immune system has emerged as a new field of research. Regular PA may promote an anti-inflammatory state in the body, thus contributing to the down-regulation of pro-inflammatory processes related to the onset and progression of multiple diseases. We aimed to assess whether overall PA levels were associated with differences in blood gene expression profiles, in a cohort of middle-aged Norwegian women. We used information from 977 women included in the Norwegian Women and Cancer (NOWAC) Post-genome cohort. Information on PA and covariates was extracted from the NOWAC database. Blood samples were collected using the PAXgene Blood RNA collection system, and gene expression profiles were measured using Illumina microarrays. The R-package limma was used for the single-gene level analysis. For a target gene set analysis, we used the global test R-package with 48 gene sets, manually curated from the literature and relevant molecular databases.ResultsWe found no associations between overall PA levels and gene expression profiles at the single-gene level. Similarly, no gene sets reached statistical significance at adjusted p < 0.05. In our analysis of healthy, middle-aged Norwegian women, self-reported overall PA was not associated with differences in blood gene expression profiles.
Highlights
Physical activity (PA) is one of the major modifiable risk factors for several diseases, along with other lifestyle factors such as smoking, alcohol consumption, and diet
We found no associations between overall PA levels and gene expression profiles at the single-gene level
In our analysis of healthy, middle-aged Norwegian women, self-reported overall PA was not associated with differences in blood gene expression profiles
Summary
Physical activity (PA) is one of the major modifiable risk factors for several diseases, along with other lifestyle factors such as smoking, alcohol consumption, and diet. PA is a complex phenomenon, which includes concepts such as exercise and training, as well as occupational, leisure time, household and transportation activities, all at different intensity, duration and frequency [1]. Studies have shown that PA is associated with reduced risk of both communicable [2] and non-communicable diseases like cardiovascular diseases, diabetes, overweight/obesity, and cancers of the breast, endometrium and colon [3–7]. PA influences energy expenditure, metabolism, cardiorespiratory and muscular fitness, and body composition, with subsequent consequences for disease risk [1]. The main hormonal systems at play in the link between PA and disease include sex steroids [8, 9], adipokines [10], as well as insulin and insulin-like growth factors [11].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.