Abstract
Histone modifications have been widely correlated with genetic activities. However, how these posttranslational modifications affect the dynamics and the structure of chromatin is poorly understood. Here, we describe the incorporation of the exogenous histone proteins into the slime mold Physarum polycephalum, which has been revealed to be a valuable tool for examining different facets of the function histones in chromatin dynamics like replication-coupled chromatin assembly, histone exchange, and nucleosome turnover.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.