Abstract

BackgroundEscherichia coli is the leading cause of bloodstream infections, associated with a significant mortality. Recent genomic analyses revealed that few clonal lineages are involved in bloodstream infections and captured the emergence of some of them. However, data on within sequence type (ST) population genetic structure evolution are rare.MethodsWe compared whole genome sequences of 912 E. coli isolates responsible for bloodstream infections from two multicenter clinical trials that were conducted in the Paris area, France, 12 years apart, in teaching hospitals belonging to the same institution (“Assistance Publique-Hôpitaux de Paris”). We analyzed the strains at different levels of granularity, i.e., the phylogroup, the ST complex (STc), and the within STc clone taking into consideration the evolutionary history, the resistance, and virulence gene content as well as the antigenic diversity of the strains.ResultsWe found a mix of stability and changes overtime, depending on the level of comparison. Overall, we observed an increase in antibiotic resistance associated to a restricted number of genetic determinants and in strain plasmidic content, whereas phylogroup distribution and virulence gene content remained constant. Focusing on STcs highlighted the pauci-clonality of the populations, with only 11 STcs responsible for more than 73% of the cases, dominated by five STcs (STc73, STc131, STc95, STc69, STc10). However, some STcs underwent dramatic variations, such as the global pandemic STc131, which replaced the previously predominant STc95. Moreover, within STc131, 95 and 69 genomic diversity analysis revealed a highly dynamic pattern, with reshuffling of the population linked to clonal replacement sometimes coupled with independent acquisitions of virulence factors such as the pap gene cluster bearing a papGII allele located on various pathogenicity islands. Additionally, STc10 exhibited huge antigenic diversity evidenced by numerous O:H serotype/fimH allele combinations, whichever the year of isolation.ConclusionsAltogether, these data suggest that the bloodstream niche is occupied by a wide but specific phylogenetic diversity and that highly specialized extra-intestinal clones undergo frequent turnover at the within ST level. Additional worldwide epidemiological studies overtime are needed in different geographical and ecological contexts to assess how generalizable these data are.

Highlights

  • Escherichia coli is the leading cause of bloodstream infections, associated with a significant mortality

  • Stability of phylogroup composition and virulence factors (VFs) content is associated to an increase of antibiotic resistance level between 2005 and 2016-7 collections We sequenced and analyzed the genomes of 367 and 545 strains of E. coli/Escherichia clades responsible for

  • Fine scale analysis of the big four extra-intestinal pathogenic E. coli (ExPEC) ST complex (STc) reveals highly dynamic population structure To document more thoroughly the evolution of within STc population structure, we focused on the four main STcs, namely STc131, STc95, STc73, and STc69

Read more

Summary

Introduction

Escherichia coli is the leading cause of bloodstream infections, associated with a significant mortality. Several studies have pointed the role of bacterial characteristics such as clonal group belonging and presence of specific virulence genes [3, 5, 6, 8, 9], whereas the impact of antibiotic resistance is unclear [4,5,6, 10]. The extra-intestinal intrinsic virulence of E. coli strains has been evaluated thoroughly using a mouse model of sepsis [12,13,14] and is linked to the phylogenetic/clonal background (mainly phylogenetic group B2 associated to increased virulence) and the presence of virulence genes encoding for iron capture systems, protectins, invasins, adhesins, and toxins. It has been suggested that these virulence factors (VFs) may rather have been selected for their advantages in the commensal niche where virulence may be considered as a by-product of commensalism [16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call