Abstract

Abstract Parthenogenetic lineages are known to rapidly colonize large areas that become available after glacial periods as parthenogenetic reproduction is beneficial over mating when the favorable season is very short. The only obligatory parthenogenetic species of the largest bush-cricket subfamily Phaneropterinae is Poecilimon intermedius. It belongs to the Anatolio-Balkan lineage Poecilimon ampliatus species group and in contrast has a remarkably broad distribution from Central Europe to China, following the pattern of geographical parthenogenesis. In this study we provide a systematic revision of the P. ampliatus group based on mitochondrial (ND2) and nuclear (ITS) phylogeny. We estimate divergence times by applying secondary calibration on the ND2 tree to test for congruence between recent splits in the group and the Pleistocene climatic oscillations. We use ecological niche modelling to analyze the ecological requirements of the parthenogenetic P. intermedius and its sexually reproducing sister species P. ampliatus. By projecting on the conditions during the Last Glacial Maximum we outline the suitable areas for both species during the glacial cycles and discuss range shifts in response to climate change. Based on all results we hypothesize that the drought-tolerant P. intermedius originated during the recent glaciations in the southwestern part of its current range and rapidly radiated in a northeastern direction. Its sister species P. ampliatus, which is adapted to higher levels of precipitation, remained in the western Balkans, where populations retreated to higher altitudes during warming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call