Abstract

Legume plants have colonized almost all terrestrial biotopes. Their ecological success is partly due to the selective advantage provided by their symbiotic association with nitrogen-fixing bacteria called rhizobia, which allow legumes to thrive on marginal lands and nitrogen depleted soils where non-symbiotic plants cannot grow. Additionally, their symbiotic capacities result in a high protein content in their aerial parts and seeds. This interesting nutritional value has led to the domestication and agricultural exploitation of several legumes grown for seeds and/or fodder for human and domestic animal consumption. Several cultivated legume species are thus grown far beyond their natural geographic range. Other legume species have become invasives, spreading into new habitats. The cultivation and establishment of legume species outside of their original range requires either that they are introduced or cultivated along with their original symbiotic partner or that they find an efficient symbiotic partner in their introduced habitat. The peanut, Arachis hypogaea, a native of South America, is now cultivated throughout the world. This species forms root nodules with Bradyrhizobium, but it is unclear whether these came with the seeds from their native range or were acquired locally. Here we propose to investigate the phylogeography of Bradyrhizobium spp. associated with a number of different wild and cultivated legume species from a range of geographical areas, including numerous strains isolated from peanut roots across the areas of peanut cultivation. This will allow us to address the question of whether introduced/cultivated peanuts associate with bacteria from their original geographic range, i.e., were introduced together with their original bacterial symbionts, or whether they acquired their current associations de novo from the bacterial community within the area of introduction. We will base the phylogenetic analysis on sequence data from both housekeeping and core genes and a symbiotic gene (nif). Differences between the phylogenetic signal of symbiotic and non-symbiotic genes could result from horizontal transfer of symbiosis capacity. Thus this study will also allow us to elucidate the processes by which this symbiotic association has evolved within this group of Bradyrhizobium spp.

Highlights

  • The symbiosis between legume plants and nitrogen-fixing bacteria called rhizobia is a major ecological process in the nitrogen biogeochemical cycle

  • We searched the National Center for Biotechnology Information (NCBI) database for the following keywords: Bradyrhizobium AND to find sequence data of Bradyrhizobium associated with peanut (A. hypogaea)

  • We found no cases consistent with scenario 3 (Figure 2A) but, surprisingly we found a case of scenario 4, depicted in Figure 2B, of what appears to be a co-introduction of peanut with a bacterial strain that nodulates Inga in Brazil that recombined with bacteria similar to those nodulating soybean, leading to a recombinant with the symbiotic genes most closely related to those of soybean strains combined with the housekeeping genes of a strain from Brazil

Read more

Summary

Introduction

The symbiosis between legume plants and nitrogen-fixing bacteria called rhizobia is a major ecological process in the nitrogen biogeochemical cycle This symbiosis allows legume plants to colonize N-limited environments, to accumulate large amounts of protein in their seeds and aerial parts and to enrich the soil with an input of fixed nitrogen at the end of their life cycle. Legume plants, with these very useful characteristics, were among the first domesticated plants at the dawn of agriculture, constituting, together with cereals (such as barley, emmer, and einkorn wheats) and flax (the first fiber crop), the so-called Neolithic founder crops. If the habitual partners are not introduced along with the host plants nodulating bacteria must be acquired locally from the soil bacterial community in the area of introduction

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call