Abstract

BackgroundMountains have not only provided refuge for species, but also offered dispersal corridors during the Neogene and Quaternary global climate changes. Compared with a plethora of studies on the refuge role of China’s mountain ranges, their dispersal corridor role has received little attention in plant phylogeographic studies. Using phylogeographic data of Eomecon chionantha Hance (Papaveraceae), this study explicitly tested whether the Nanling Mountains, which spans from west to east for more than 1000 km in subtropical China, could have functioned as a dispersal corridor during the late Quaternary in addition to a glacial refugium.ResultsOur analyses revealed a range-wide lack of phylogeographic structure in E. chionantha across three kinds of molecular markers [two chloroplast intergenic spacers, nuclear ribosomal internal transcribed spacer (nrITS), and six nuclear microsatellite loci]. Demographic inferences based on chloroplast and nrITS sequences indicated that E. chionantha could have experienced a strong postglacial range expansion between 6000 and 1000 years ago. Species distribution modelling showed that the Nanling Mountains and the eastern Yungui Plateau were the glacial refugia of E. chionantha. Reconstruction of dispersal corridors indicated that the Nanling Mountains also have acted as a corridor of population connectivity for E. chionantha during the late Quaternary.ConclusionsOur results suggest that the Nanling Mountains may acted dual roles as a dispersal corridor in east-west direction and as a glacial refugium in subtropical China during the late Quaternary. The population connectivity mediated by the mountain range and a strong postglacial range expansion are the most likely reasons for the lack of phylogeographic structure in E. chionantha. The hypothesis of dual roles of the mountain range presented here sheds new insights into the phylogeographic patterns of organisms in subtropical China.

Highlights

  • Mountains have provided refuge for species, and offered dispersal corridors during the Neogene and Quaternary global climate changes

  • We investigated the phylogeographic pattern of E. chionantha using multi-loci genetic data, and hindcasted the distribution at the Last Glacial Maximum (LGM) and Mid-Holocene (MH)

  • Haplotype diversity at population level varied from 0 to 0.667, with the highest occurring in populations 22 and 35 (Table 1)

Read more

Summary

Introduction

Mountains have provided refuge for species, and offered dispersal corridors during the Neogene and Quaternary global climate changes. Using phylogeographic data of Eomecon chionantha Hance (Papaveraceae), this study explicitly tested whether the Nanling Mountains, which spans from west to east for more than 1000 km in subtropical China, could have functioned as a dispersal corridor during the late Quaternary in addition to a glacial refugium Given their extremely diverse topography and a wide spectrum of environmental conditions within short distances, mountains have generally provided refuge for species, especially during the Neogene and Quaternary global climate changes [1,2,3]. Many mid-elevation mountain ranges and hilly areas in southern and central Europe did provide shelters for the survival of Fagus sylvatica during the Quaternary glacial periods, and facilitate the northward spread of the residual populations during inter−/postglacial periods, because beeches found their humid habitats that were absent on the great plains [7] Such cases were reported in the Korean Peninsula of east Asia. The uninterrupted Baekdudaegan Mountains, that runs from north to south over 1600 km, acted as a true dispersal corridor for a large assemblage of boreal and temperate elements during the Quaternary climate changes beyond serving as a refugium for many species [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.