Abstract

BackgroundSpecies with strict ecological requirements may provide new insights into the forces that shaped the geographic variation of genetic diversity. The Pyrenean desman, Galemys pyrenaicus, is a small semi-aquatic mammal that inhabits clean streams of the northern half of the Iberian Peninsula and is endangered in most of its geographic range, but its genetic structure is currently unknown. While the stringent ecological demands derived from its aquatic habitat might have caused a partition of the genetic diversity among river basins, Pleistocene glaciations would have generated a genetic pattern related to glacial refugia.ResultsTo study the relative importance of historical and ecological factors in the genetic structure of G. pyrenaicus, we used mitochondrial and intronic sequences of specimens covering most of the species range. We show, first, that the Pyrenean desman has very low levels of genetic diversity compared to other mammals. In addition, phylogenetic and dating analyses of the mitochondrial sequences reveal a strong phylogeographic structure of a Middle Pleistocene origin, suggesting that the main lineages arose during periods of glacial isolation. Furthermore, both the spatial distribution of nuclear and mitochondrial diversity and the results of species distribution modeling suggest the existence of a major glacial refugium in the northwestern part of the Iberian Peninsula. Finally, the main mitochondrial lineages show a striking parapatric distribution without any apparent exchange of mitochondrial haplotypes between the lineages that came into secondary contact (although with certain permeability to nuclear genes), indicating incomplete mixing after the post-glacial recolonization. On the other hand, when we analyzed the partition of the genetic diversity among river basins, the Pyrenean desman showed a lower than expected genetic differentiation among main rivers.ConclusionsThe analysis of mitochondrial and intronic markers in G. pyrenaicus showed the predominant effects of Pleistocene glaciations on the genetic structure of this species, while the distribution of the genetic diversity was not greatly influenced by the main river systems. These results and, particularly, the discovery of a marked phylogeographic structure, may have important implications for the conservation of the Pyrenean desman.

Highlights

  • Species with strict ecological requirements may provide new insights into the forces that shaped the geographic variation of genetic diversity

  • Species distribution modeling in the Last Glacial Maximum (LGM) To study the relationship between the conspicuous genetic diversity gradient found in the Pyrenean desman (Figure 3) and possible glacial refugia, we built a species distribution model based on the known-presence localities of G. pyrenaicus (Figure 8A). When this model was projected to the conditions of the LGM, we found that the maximum probabilities of potential presence occurred again in the NW part of the Iberian Peninsula (Figure 8B), in notable coincidence with the area of contemporary greater genetic diversity of the species (Figure 3)

  • Dating analysis of the mitochondrial lineages We have been able to gather a number of solid pieces of evidence that show that the evolutionary history of G. pyrenaicus and the genetic structure of its populations were strongly influenced by the Pleistocene glaciations

Read more

Summary

Introduction

Species with strict ecological requirements may provide new insights into the forces that shaped the geographic variation of genetic diversity. While the stringent ecological demands derived from its aquatic habitat might have caused a partition of the genetic diversity among river basins, Pleistocene glaciations would have generated a genetic pattern related to glacial refugia. The genetic diversity patterns of species are a consequence of their evolutionary history (e.g. the existence of past refugia or vicariant geological events) and of contemporary constraints to dispersal (e.g. habitat fragmentation). These processes are expected to give rise to specific phylogeographic patterns [1,2,3], the detection of which can be useful to infer the relative importance of different evolutionary and ecological forces. Current barriers to gene flow may be more determinant in the genetic structure of species inhabiting naturally fragmented habitats [8] or in species that have very specific ecological requirements, such as aquatic organisms [1]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call