Abstract

Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species’ responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n = 209 this study, n = 774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine’s Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This pattern is suggestive of colonization occurring in accordance with glacial retreat, and supports expansion from a single refugium. These data are significant relative to current discussions on the conservation status of this species across its range.

Highlights

  • Understanding phylogeographic differentiation and patterns of genetic diversity for many extant species in the Northern Hemisphere hinges on understanding the interglacial-glacial cycles of the Quaternary [1,2]

  • We propose four alternative hypotheses that may explain observed patterns of haplotype distribution and resulting groupings that include: (1) present-day populations diverged from a single ancestral population during the last glacial maximum (LGM); (2) a single incursion across Beringia resulted in the divergence between Eastern and Western Hemisphere wolverines, with divergence of North American populations occurring during glacial retreat; (3) a single incursion across Beringia during the LGM, followed by a west-to-east stepping-stone divergence pattern across North America; and (4) two incursions from Beringia during the LGM, with the second incursion being followed by a west-to-east stepping-stone divergence

  • In contrast to previous glacial refugia studies of arctic species (e.g. [18,19,20]), we found no molecular evidence of wolverines inhabiting multiple glacial refugia during the last glacial maximum

Read more

Summary

Introduction

Understanding phylogeographic differentiation and patterns of genetic diversity for many extant species in the Northern Hemisphere hinges on understanding the interglacial-glacial cycles of the Quaternary [1,2]. Cold adapted species can be informative as these species typically experience population increases and range expansions during glacials, and range contractions during interglacials [1,3]. Wide-ranging species generally display a lack of population structuring across their range, increasing the likelihood of similar mitochondrial haplotypes being observed across very distant geographical locations [14,15]. Overall, these data are relevant to understanding how historic processes influence contemporary genetic patterns and how these data should be interpreted in context of management actions for species of conservation concern

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.