Abstract

Phenotypic polymorphism within a species is a notable phenomenon in evolutionary biology to understand the process of adaptive speciation and other historical events. The Saxifraga fortunei complex is a widespread herb found in East Asia. It includes several ecotypic taxa corresponding to their habitat environments. The distribution of the various ecotypes in a limited area of the Japanese Archipelago makes the species a suitable model to investigate the impact of population demographic history and natural selection on lineage diversification. Here, Sanger-based sequencing was used to estimate the divergence timeframe between populations of the Eurasian continent and Japan. Genome-wide SNPs obtained by ddRAD sequencing were used to investigate the phylogeographic origins of ecotypic taxa. The phylogenetic analyses revealed the divergence of the Japanese population from the continental population in the late Miocene. Two distinct regional clades of North and South Japan were identified; phenotypic diversification was evident only in the southern clade. The South Japan clades displayed a historical distribution expansion from north to south. The phenotypic variations appeared to have generated during the expansion. The ecotypic boundaries were incongruent with the genetic grouping. We propose that morphological and ecological specialization in Japanese populations was repeatedly generated by local natural selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call