Abstract

A morphological data set for the histerid beetle subfamily Saprininae comprising 95 adult morphological characters scored (multistate coding) from 72 terminal taxa and four outgroups was developed in order to analyse and determine the relationships amongst the genera and subgenera of the Saprininae subfamily. Cladograms were rooted with exemplars of Dendrophilinae (genus Dendrophilus), Bacaniini (genus Bacanius), Abraeinae (genus Chaetabraeus), and Anapleini (genus Anapleus). Parsimony-based phylogenetic analyses were performed based on the type species of each genus and subgenus of the Saprininae occurring around the world, with the exception of three taxa: Paramyrmetes foveipennis (type species of the genus Paramyrmetes), Satrapister nitens (type species of the genus Satrapister) and Xerosaprinus (Auchmosaprinus) laciniatus (type species of the subgenus Auchmosaprinus) that were not available. In addition, in order to test the monophyly of several questionable genera, multiple exemplars were added in a few cases. The analysis also included an exemplar of an apparently undescribed genus. The results of the analysis confirm the monophyly of the subfamily supported by two unique synapomorphies: (1) presence of sensory structures of the antenna; and (2) presence of the antennal cavity, as well as several other weaker synapomorphies. However, the phylogeny inferred here shows mostly low support for the deeper branches and consequently no major changes in the Saprininae classification are proposed. The presented cladogram is discussed together with its implications for the evolution of the subfamily. The most informative characters and their respective states are outlined. Multiple shifts in lifestyles have evolved during the evolutionary history of the group. Taxa found near the root of the cladogram are mostly nidicolous or myrmecophilous, and inquiliny is presumed to be the plesiomorphic lifestyle of the subfamily. The nidicolous lifestyle has undergone several transformations to other lifestyles and myrmecophily has evolved three times independently during the evolution of the subfamily. Termitoxeny has evolved two times independently in the group whereas ecological adaptation for life in caves has likewise evolved two times independently. The analyses yielded a large clade of predominantly psammophilous taxa; psammophily is thought to have evolved once and has been subsequently lost several times. © 2014 The Linnean Society of London

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call