Abstract

Simple SummarySAR324, newly proposed as its own candidate phylum, is a diverse and globally abundant bacterial group living in a wide range of environments, from deep-sea hydrothermal vents and brine pools to the epipelagic regions of the global oceans and terrestrial aquifers. The different SAR324 clades harbor a diverse array of genes and pathways well adapted to their respective environments. This metabolic flexibility explains the ubiquitous presence and the importance of SAR324 in global biogeochemical cycles.The bacterial SAR324 cluster is ubiquitous and abundant in the ocean, especially around hydrothermal vents and in the deep sea, where it can account for up to 30% of the whole bacterial community. According to a new taxonomy generated using multiple universal protein-coding genes (instead of the previously used 16S rRNA single gene marker), the former Deltaproteobacteria cluster SAR324 has been classified since 2018 as its own phylum. Yet, very little is known about its phylogeny and metabolic potential. We downloaded all publicly available SAR324 genomes (65) from all natural environments and reconstructed 18 new genomes using publicly available oceanic metagenomic data and unpublished data from the waters underneath the Ross Ice Shelf. We calculated a global SAR324 phylogenetic tree and identified six clusters (namely 1A, 1B, 2A, 2B, 2C and 2D) within this clade. Genome annotation and metatranscriptome read mapping showed that SAR324 clades possess a flexible array of genes suited for survival in various environments. Clades 2A and 2C are mostly present in the surface mesopelagic layers of global oceans, while clade 2D dominates in deeper regions. Our results show that SAR324 has a very versatile and broad metabolic potential, including many heterotrophic, but also autotrophic pathways. While one surface water associated clade (2A) seems to use proteorhodopsin to gain energy from solar radiation, some deep-sea genomes from clade 2D contain the complete Calvin–Benson–Bassham cycle gene repertoire to fix carbon. This, in addition to a variety of other genes and pathways for both oxic (e.g., dimethylsulfoniopropionate degradation) and anoxic (e.g., dissimilatory sulfate reduction, anaerobic benzoate degradation) conditions, can help explain the ubiquitous presence of SAR324 in aquatic habitats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.