Abstract

Nocardia species identification is difficult due to a complex and rapidly changing taxonomy, the failure of 16S rRNA and cellular fatty acid analysis to discriminate many species, and the unreliability of biochemical testing. Here, Nocardia species identification was achieved through multilocus sequence analysis (MLSA) of gyrase B of the β subunit of DNA topoisomerase (gyrB), 16S rRNA (16S), subunit A of SecA preprotein translocase (secA1), the 65-kDa heat shock protein (hsp65), and RNA polymerase (rpoB) applied to 190 clinical, 36 type, and 11 reference strains. Phylogenetic analysis resolved 30 sequence clusters with high (>85%) bootstrap support. Since most clusters contained a single type strain and the analysis corroborated current knowledge of Nocardia taxonomy, the sequence clusters were equated with species clusters and MLSA was deemed appropriate for species identification. By comparison, single-locus analysis was inadequate because it failed to resolve species clusters, partly due to the presence of foreign alleles in 22.1% of isolates. While MLSA identified the species of the majority (71.3%) of strains, it also identified clusters that may correspond to new species. The correlation of the identities by MLSA with those determined on the basis of microscopic examination, biochemical testing, and fatty acid analysis was 95%; however, MLSA was more discriminatory. Nocardia cyriacigeorgica (21.58%) and N. farcinica (14.74%) were the most frequently encountered species among clinical isolates. In summary, five-locus MLSA is a reliable method of elucidating taxonomic data to inform Nocardia species identification; however, three-locus (gyrB-16S-secA1) or four-locus (gyrB-16S-secA1-hsp65) MLSA was nearly as reliable, correctly identifying 98.5% and 99.5% of isolates, respectively, and would be more feasible for routine use in a clinical reference microbiology laboratory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.