Abstract

Reticulate evolution often leads to incongruence between nuclear and plastid phylogenies, and comparisons between them have been used as a first approximation to disentangle patterns of hybridization. Because other processes like incomplete lineage sorting and phylogenetic error also produce similar incongruence patterns, additional sources of evidence must be incorporated. Here we focus on reconstructing the phylogeny of Lachemilla (Rosaceae) using nuclear ribosomal ITS and plastid trnL-FDNAsequences, and explore widespread patterns of cytonuclear discordance in this group. Lachemilla is a highly morphologically variable group of perennial herbs and shrubs, and a nearly ubiquitous member of the diverse Neotropical high-altitude grasslands. Our analyses identified four major clades within Lachemilla that are in part congruent with previous morphological classifications of the group. Furthermore, using multiple sources of evidence, including a procrustean approach to cophylogeny estimation, coalescent-based simulations, phylogenetic networks, chromosome counts, and genome size estimations, we also revealed a large-scale pattern of incongruence between the plastid and nuclear phylogenies in Lachemilla, which is mainly the result of widespread hybridization and polyploidy.We also estimated that the origin of Lachemilla in South America (;14.5 MYA) predates the “rapid-uplift” diversification model that has been suggested for other high species-richness Andean plant clades, but following the formation of the high-elevation Andean grasslands during the last 5 MYA, a rapid accumulation of particular nested lineages has contributed to the ubiquitous presence of Lachemilla in these biomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.