Abstract

In an attempt to track the chromosomal differentiation in the Dichroplus elongatus species group, we analyzed the karyotypes of four species with classical cytogenetic and mapping several multigene families through fluorescent in situ hybridization (FISH). We improved the taxon sampling of the D. elongatus species group adding new molecular data to infer the phylogeny of the genus and reconstruct the karyotype evolution. Our molecular analyses recovered a fully resolved tree with no evidence for the monophyly of Dichroplus. However, we recovered several stable clades within the genus, including the D. elongatus species group, under the different strategies of tree analyses (Maximum Parsimony and Maximum Likelihood). The chromosomal data revealed minor variation in the D. elongatus species group’s karyotypes caused by chromosome rearrangements compared to the phylogenetically related D. maculipennis species group. The karyotypes of D. intermedius and D. exilis described herein showed the standard characteristics found in most Dichroplini, 2n = 23/24, X0♂ XX♀, Fundamental number (FN) = 23/24. However, we noticed two established pericentric inversions in D. intermedius karyotype, raising the FN to 27♂/28♀. A strong variation in the heterochromatic blocks distribution was evidenced at interespecific level. The multigene families’ mapping revealed significant variation, mainly in rDNA clusters. These variations are probably caused by micro chromosomal changes, such as movement of transposable elements (TEs) and ectopic recombination. These observations suggest a high genomic dynamism for these repetitive DNA sequences in related species. The reconstruction of the chromosome character “variation in the FN” posits the FN = 23/24 as the ancestral state, and it is hypothesized that variations due to pericentric inversions has arisen independently three times in the evolutionary history of Dichroplus. One of these independent events occurred in the D. elongatus species group, where D. intermedius is the unique case with the highest FN described in the tribe Dichroplini.

Highlights

  • The grasshopper genus Dichroplus Stål is dominant in South American grasslands, where the D. elongatus species group comprises representatives capable of causing considerable damage to crops and grazing [1, 2, 3]

  • In order to contribute to the knowledge on the chromosomal differentiation pattern and their evolution, the aim of this study focuses on analyzing the chromosome morphology, structure and meiotic behavior in males and mitotic females in representatives from the Dichroplus elongatus species group (D. elongatus, D fuscus, D. exilis, D. intermedius)

  • Species of D. elongatus group analyzed here shared several taxonomic characters [4, 39], and at the chromosomal level show slight variations due to the occurrence of chromosome rearrangements compared with the D. maculipennis species group [6, 40]

Read more

Summary

Introduction

The grasshopper genus Dichroplus Stål is dominant in South American grasslands, where the D. elongatus species group comprises representatives capable of causing considerable damage to crops and grazing [1, 2, 3]. The following eight species were included by Ronderos et al [4] in the group, based on their similar external anatomy and body color patterns [4]: D. elongatus Giglio-Tos, D. fuscus (Thunberg), D. exilis Giglio-Tos, D. patruelis (Stål), D. paraelongatus Carbonell, D. misionensis Carbonell, D. mantiqueirae Ronderos, Carbonell & Mesa and D. intermedius Ronderos. Despite the considerable cytogenetic interest in Dichroplus, representatives from the D. elongatus species group have been rather neglected in this respect. Considering the amount of cytogenetic studies done in the genus, analyses of chromosome morphology and meiotic behavior are very limited for the species. Concerning multigene families, the 18S, 5S rDNAs, H3 and U2 histone genes have been mapped in several related genera in the tribe Dichroplini [12, 13] but never in Dichroplus

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call