Abstract
In the Indo-Pacific area, the Caribbean region and West Africa, insular systems are colonised by particular Gobiids of the Sicydiinae subfamily. These species spawn in freshwater, the free embryos drift downstream to the sea where they undergo a planktonic phase, before returning to rivers to grow and reproduce; an amphidromous lifestyle. These gobies are the biggest contributors to the diversity of fish communities in insular systems and have the highest levels of endemism, yet their phylogeny has not been explored before with molecular data. To understand the phylogeny and the biogeography of this subfamily, sequences from the mitochondrial 16S rDNA and cytochrome oxidase I and from the nuclear rhodopsin gene were obtained for 50 Sicydiinae specimens of seven genera. Our results support the monophyly of the subfamily and of all the genera except Sicyopus, which is polyphyletic. Five major clades were identified within this subfamily. One clade clusters Sicyopterus and Sicydium as sister genera, one contains the genus Stiphodon split into two different groups, two other clades include only Sicyopus (Smilosicyopus) and Cotylopus, respectively, and the last clade groups Akihito, Lentipes and Sicyopus (Sicyopus). As a result, the subgenus Smilosicyopus is elevated herein as a genus. A molecular dating approach helps the interpretation of these phylogenetic results in terms of amphidromy and biogeographical events that have allowed the Sicydiinae to colonise the Indo-Pacific, West African and Caribbean islands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.