Abstract

BackgroundThe genus Corbicula is one of the most invasive groups of molluscs. It includes both sexual and androgenetic lineages. The present study re-assessed the different morphotypes and haplotypes of West European Corbicula in order to clarify their taxonomic identification and phylogenetic relationships with American and Asian Corbicula clams. We studied several populations from West European river basins (Meuse, Seine, Rhine and Rhône) through an "integrative taxonomy" approach. We combined morphology, partial mitochondrial COI and cyt b sequences and eleven microsatellite loci. Furthermore, we looked for discrepancies between mtDNA and nrDNA/morphology, indicative of androgenesis between lineages.ResultsThere are three Corbicula morphotypes in Western Europe associated to three mitochondrial lineages and three genotypes. Form R shares the same COI haplotype as the American form A and the Japanese C. leana. Form S and the American form C have the same haplotype, although their morphologies seem divergent. The European form Rlc belongs to the same mitochondrial lineage as both the American form B and the Asian C. fluminea.Interestingly, within each haplotype/genotype or lineage, no genetic diversity was found although their invasive success is high. Moreover, we detected rare mismatches between mtDNA and nrDNA/morphology, indicative of androgenesis and mitochondrial capture between form R and form S and therefore challenging the phylogenetic relatedness and the species status within this genus. The global phylogenetic analysis revealed that the sexual Corbicula lineages seem restricted to the native areas while their androgenetic relatives are widespread and highly invasive.ConclusionsWe clarified the discrepancies and incongruent results found in the literature about the European morphotypes of Corbicula and associated mitochondrial lineages. The three West European morphotypes belong to three distinct nuclear and mitochondrial lineages. However mitochondrial capture occurs in sympatric populations of forms R and S. The species status of the morphotypes therefore remains doubtful. Moreover the androgenetic lineages seem widely distributed compared to their sexual relatives, suggesting that androgenesis and invasive success may be linked in the genus Corbicula.

Highlights

  • The genus Corbicula is one of the most invasive groups of molluscs

  • - Unravelling discordant c oxidase subunit I (COI) results The sequence of haplotype 3 (FW4) we found in form Rlc (Rhône) was identical to the C. fluminalis - haplotype V and not to the expected haplotype IV of the Rhône found by Renard et al [40]

  • The three different morphotypes of Corbicula found in Europe are clearly distinct at the mitochondrial and nuclear level

Read more

Summary

Introduction

The genus Corbicula is one of the most invasive groups of molluscs It includes both sexual and androgenetic lineages. The clams of the genus Corbicula are successful fresh and brackish water invaders considered ‘r’-strategists, with rapid maturation, high fecundity, and high dispersal [1,2,3]. These bivalves are benthic filter-feeders which can reduce phytoplankton density [4,5,6], compete with native characterized by the fertilization of an oocyte by an unreduced sperm (with a DNA content equal to the DNA content of a somatic cell). The clams quickly spread throughout North America and arrived in South America in the 1970s [23] and in Europe in the 1980s [24]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.