Abstract

The relationship between body size and metabolic rate is a crucial issue in organismal biology and evolution. There has been considerable debate over whether the scaling exponent of the relationship is 0.75 (Kleiber's Law) or 0.67. Here we show that determination of this exponent for mammals depends on both the evolutionary tree and the regression model used in the comparative analysis. For example, more recent molecular-based phylogenies tend to support a 0.67 exponent, whereas older phylogenies, mostly based on morphological data, suggest a 0.75 exponent. However, molecular phylogenies yield more variable results than morphological phylogenies and thus are not currently helping to resolve the issue.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.