Abstract

The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.

Highlights

  • Wolbachia are intracellular gram-negative bacteria that are found in association with a variety of invertebrate species, including insects, mites, spiders, terrestrial crustaceans, and nematodes

  • The lack of anomalous composition suggests either that any foreign DNA in wMel was acquired long enough ago to allow it to ‘‘ameliorate’’ and become compositionally similar to endogenous Wolbachia DNA (Lawrence and Ochman 1997, 1998) or that any foreign DNA that is present was acquired from organisms with similar composition to endogenous wMel genes. Owing to their potential effects on genome evolution, we propose that the acquisition and maintenance of these repetitive and mobile elements by wMel have played a key role in shaping the evolution of Wolbachia

  • It has been suggested that the higher evolutionary rates in intracellular bacteria are the result of high mutation rates that are in turn due to the loss of genes for DNA repair processes (e.g., Itoh et al 2002)

Read more

Summary

Introduction

Wolbachia are intracellular gram-negative bacteria that are found in association with a variety of invertebrate species, including insects, mites, spiders, terrestrial crustaceans, and nematodes. It has been suggested that the higher evolutionary rates in intracellular bacteria are the result of high mutation rates that are in turn due to the loss of genes for DNA repair processes (e.g., Itoh et al 2002) This is likely not the case in wMel since its genome encodes proteins corresponding to a broad suite of DNA repair pathways including mismatch repair, nucleotide excision repair, base excision repair, and homologous recombination (Table S6). Genes involved in pathogenicity in bacteria have been found to be frequently associated with regions of anomalous nucleotide composition, possibly owing to transfer from other species or insertion into the genome from plasmids or phage In the four such regions in wMel (see above; see Table 3), some additional candidates for pathogenicity-related activities are present including a putative penicillin-binding protein (WD0719), genes predicted to be involved in cell wall synthesis (WD0095–WD0098, including D-alanine-D-alanine ligase, a putative FtsQ, and D-alanyl-D-alanine carboxy peptidase) and a multidrug resistance protein (WD0099). We call particular attention to three of the ankyrin-containing proteins (WD0285, WD0636, and WD0637), which are among the very few genes, other than those encoding components of the translation apparatus, that have significantly biased codon usage relative to what is expected based on GC content, suggesting they may be highly expressed

Conclusions
Findings
Materials and Methods
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call