Abstract

The last two decades have revealed that phages (viruses that infect bacteria) are abundant and play fundamental roles in the Earth System, with the T4-like myoviruses (herein T4-like phages) emerging as a dominant 'signal' in wild populations. Here we examine 27 T4-like phage genomes, with a focus on 17 that infect ocean picocyanobacteria (cyanophages), to evaluate lateral gene transfer (LGT) in this group. First, we establish a reference tree by evaluating concatenated core gene supertrees and whole genome gene content trees. Next, we evaluate what fraction of these 'core genes' shared by all 17 cyanophages appear prone to LGT. Most (47 out of 57 core genes) were vertically transferred as inferred from tree tests and genomic synteny. Of those 10 core genes that failed the tree tests, the bulk (8 of 10) remain syntenic in the genomes with only a few (3 of the 10) having identifiable signatures of mobile elements. Notably, only one of these 10 is shared not only by the 17 cyanophages, but also by all 27 T4-like phages (thymidylate synthase); its evolutionary history suggests cyanophages may be the origin of these genes to Prochlorococcus. Next, we examined intragenic recombination among the core genes and found that it did occur, even among these core genes, but that the rate was significantly higher between closely related phages, perhaps reducing any detectable LGT signal and leading to taxon cohesion. Finally, among 18 auxiliary metabolic genes (AMGs, a.k.a. 'host' genes), we found that half originated from their immediate hosts, in some cases multiple times (e.g. psbA, psbD, pstS), while the remaining have less clear evolutionary origins ranging from cyanobacteria (4 genes) or microbes (5 genes), with particular diversity among viral TalC and Hsp20 sequences. Together, these findings highlight the patterns and limits of vertical evolution, as well as the ecological and evolutionary roles of LGT in shaping T4-like phage genomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call