Abstract

The completion of whole genome sequence of rice (Oryza sativa) has significantly accelerated functional genomics studies. Prior to the release of the sequence, only a few genes were assigned a function each year. Since sequencing was completed in 2005, the rate has exponentially increased. As of 2014, 1,021 genes have been described and added to the collection at The Overview of functionally characterized Genes in Rice online database (OGRO). Despite this progress, that number is still very low compared with the total number of genes estimated in the rice genome. One limitation to progress is the presence of functional redundancy among members of the same rice gene family, which covers 51.6 % of all non-transposable element-encoding genes. There remain a significant portion or rice genes that are not functionally redundant, as reflected in the recovery of loss-of-function mutants. To more accurately analyze functional redundancy in the rice genome, we have developed a phylogenomics databases for six large gene families in rice, including those for glycosyltransferases, glycoside hydrolases, kinases, transcription factors, transporters, and cytochrome P450 monooxygenases. In this review, we introduce key features and applications of these databases. We expect that they will serve as a very useful guide in the post-genomics era of research.

Highlights

  • The completion of whole genome sequence of rice (Oryza sativa) has significantly accelerated functional genomics studies

  • The whole-genome rice sequence, completed by the International Rice Genome Sequencing Project (IRGSP) consortium, indicates the presence of up to as many as 3,865 paralogous protein families in rice (IRGSP 2005). These include 21,998 proteins out of 42,653 total nontransposable element-related proteins predicted by the Michigan State University Rice Genome Annotation Project (MSU-RGAP; http://rice.plantbiology.msu.edu/) team (Lin et al 2008)

  • A genome-wide survey of predicted light-responsive genes in rice and functional analysis of T-DNA insertional mutants revealed that four of the tested family members have defects associated with normal growth or chlorophyll biosynthesis (Jung et al 2008)

Read more

Summary

Introduction

The completion of whole genome sequence of rice (Oryza sativa) has significantly accelerated functional genomics studies. These databases provide tools for phylogenetic analysis and have been applied to determine the similarity of assigned functions of gene families.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.