Abstract

Sweet potato is a major food security crop within sub-Saharan Africa where 90% of Africa production occurs. One of the major limitations of sweet potato production are viral infections. In this study, we used a combination of whole genome sequences from a field isolate obtained from Kenya and those available in GenBank. Sequences of four sweet potato viruses: Sweet potato feathery mottle virus (SPFMV), Sweet potato virus C (SPVC), Sweet potato chlorotic stunt virus (SPCSV), Sweet potato chlorotic fleck virus (SPCFV) were obtained from the Kenyan sample. SPFMV sequences both from this study and from GenBank were found to be recombinant. Recombination breakpoints were found within the Nla-Pro, coat protein and P1 genes. The SPCSV, SPVC, and SPCFV viruses from this study were non-recombinant. Bayesian phylogenomic relationships across whole genome trees showed variation in the number of well-supported clades; within SPCSV (RNA1 and RNA2) and SPFMV two well-supported clades (I and II) were resolved. The SPCFV tree resolved three well-supported clades (I–III) while four well-supported clades were resolved in SPVC (I–IV). Similar clades were resolved within the coalescent species trees. However, there were disagreements between the clades resolved in the gene trees compared to those from the whole genome tree and coalescent species trees. However the coat protein gene tree of SPCSV and SPCFV resolved similar clades to the genome and coalescent species tree while this was not the case in SPFMV and SPVC. In addition, we report variation in selective pressure within sites of individual genes across all four viruses; overall all viruses were under purifying selection. We report the first complete genomes of SPFMV, SPVC, SPCFV, and a partial SPCSV from Kenya as a mixed infection in one sample. Our findings provide a snap shot on the evolutionary relationship of sweet potato viruses (SPFMV, SPVC, SPCFV, and SPCSV) from Kenya as well as assessing whether selection pressure has an effect on their evolution.

Highlights

  • Sweet potato is grown in over nine million hectares (Food and Agriculture Organization of the United Nations (FAO), 2016) with 97% of global production confined to China and Africa (FAOSTAT, 2006)

  • We used a high throughput sequencing approach to identify plant viruses within sweet potato, and sought to answer the question ‘What is the phylogenomic relationship of sweet potato viruses present in the western highlands of Kenya, and what evolutionary states are they under?’ Here, we report the first complete genomes of Sweet potato feathery mottle virus (SPFMV), Sweet potato virus C (SPVC) and Sweet potato chlorotic stunt virus (SPCSV), and a partial SPCSV, from the western highlands of Kenya

  • All viral sequences generated from this study were deposited in GenBank with the following accession numbers: SPVC (MH264531), SPCSV (RNA1 MH264532), SPCSV (RNA2, MH264533), Sweet potato chlorotic fleck virus (SPCFV) (MH264534), and SPFMV (MH264535)

Read more

Summary

Introduction

Sweet potato is grown in over nine million hectares (Food and Agriculture Organization of the United Nations (FAO), 2016) with 97% of global production confined to China and Africa (FAOSTAT, 2006). Sweet potato is considered to be a food security crop and is grown within smallholder agro-ecosystems. It is intercropped with legumes such as beans (Phaseolus vulgaris), cowpea (Vigna unguiculata) and groundnut (Arachis hypogaea L.) within smallholder farms in Africa. There is a two-fold difference in production levels between smallholder farms in Africa compared to Asia, and America (Loebenstein, 2010). There are two primary modes of viral transmission within sweet potato. The second mode of transmission is through viruliferous aphids in particular: Aphis gossypii, Myzus persicae, Aphis craccivora and Lipaphis erysimi and some whiteflies (Bemisia tabaci, Trialeurodes vaporariorum) (Tugume, Mukasa & Valkonen, 2008; Navas-Castillo, Lopez-Moya & Aranda, 2014)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call