Abstract

Retroelement insertions (RIs) are low-homoplasy characters that are ideal data for addressing deep evolutionary radiations, where gene tree reconstruction errors can severely hinder phylogenetic inference with DNA and protein sequence data. Phylogenomic studies of Neoaves, a large clade of birds (>9000 species) that first diversified near the Cretaceous–Paleogene boundary, have yielded an array of robustly supported, contradictory relationships among deep lineages. Here, we reanalyzed a large RI matrix for birds using recently proposed quartet-based coalescent methods that enable inference of large species trees including branch lengths in coalescent units, clade-support, statistical tests for gene flow, and combined analysis with DNA-sequence-based gene trees. Genome-scale coalescent analyses revealed extremely short branches at the base of Neoaves, meager branch support, and limited congruence with previous work at the most challenging nodes. Despite widespread topological conflicts with DNA-sequence-based trees, combined analyses of RIs with thousands of gene trees show emergent support for multiple higher-level clades (Columbea, Passerea, Columbimorphae, Otidimorphae, Phaethoquornithes). RIs express asymmetrical support for deep relationships within the subclade Afroaves that hints at ancient gene flow involving the owl lineage (Strigiformes). Because DNA-sequence data are challenged by gene tree-reconstruction error, analysis of RIs represents one approach for improving gene tree-based methods when divergences are deep, internodes are short, terminal branches are long, and introgressive hybridization further confounds species–tree inference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call