Abstract
The tomato (Lycopersicon esculentum) Cf-9 resistance gene encodes the first characterized member of the plant receptor-like protein (RLP) family. Other RLPs such as CLAVATA2 and TOO MANY MOUTHS are known to regulate development. The domain structure of RLPs consists of extracellular leucine-rich repeats, a transmembrane helix, and a short cytoplasmic region. Here, we identify 90 RLPs in rice (Oryza sativa) and compare them with functionally characterized RLPs from different plant species and with 56 Arabidopsis (Arabidopsis thaliana) RLPs, including the downy mildew resistance protein RPP27. Many RLPs cluster into four distinct superclades, three of which include RLPs known to be involved in plant defense. Sequence comparisons reveal diagnostic amino acid residues that may specify different molecular functions in different RLP subtypes. This analysis of rice RLPs thus identified at least 73 candidate resistance genes and four genes potentially involved in development. Due to the synteny between rice and other Gramineae, this analysis should provide valuable tools for experimental studies in rice and other cereals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.