Abstract

BackgroundA considerable amount of evidence has favored ecological host-fitting, rather than coevolution, as the main mechanism responsible for trypanosome divergence. Nevertheless, beyond the study of human pathogenic trypanosomes, the genetic basis of host specificity among trypanosomes isolated from forest-inhabiting hosts remains largely unknown.MethodsTo test possible scenarios on ecological host-fitting and coevolution, we combined a host capture recapture strategy with parasite genetic data and studied the genetic variation, population dynamics and phylogenetic relationships of Trypanosoma terrestris, a recently described trypanosome species isolated from lowland tapirs in the Brazilian Pantanal and Atlantic Forest biomes.ResultsWe made inferences of T. terrestris population structure at three possible sources of genetic variation: geography, tapir hosts and ‘putative’ vectors. We found evidence of a bottleneck affecting the contemporary patterns of parasite genetic structure, resulting in little genetic diversity and no evidence of genetic structure among hosts or biomes. Despite this, a strongly divergent haplotype was recorded at a microgeographical scale in the landscape of Nhecolândia in the Pantanal. However, although tapirs are promoting the dispersion of the parasites through the landscape, neither geographical barriers nor tapir hosts were involved in the isolation of this haplotype. Taken together, these findings suggest that either host-switching promoted by putative vectors or declining tapir population densities are influencing the current parasite population dynamics and genetic structure. Similarly, phylogenetic analyses revealed that T. terrestris is strongly linked to the evolutionary history of its perissodactyl hosts, suggesting a coevolving scenario between Perissodactyla and their trypanosomes. Additionally, T. terrestris and T. grayi are closely related, further indicating that host-switching is a common feature promoting trypanosome evolution.ConclusionsThis study provides two lines of evidence, both micro- and macroevolutionary, suggesting that both host-switching by ecological fitting and coevolution are two important and non-mutually-exclusive processes driving the evolution of trypanosomes. In line with other parasite systems, our results support that even in the face of host specialization and coevolution, host-switching may be common and is an important determinant of parasite diversification.

Highlights

  • A considerable amount of evidence has favored ecological host-fitting, rather than coevolution, as the main mechanism responsible for trypanosome divergence

  • Despite F­ ST being moderately high, no significant difference in genetic structure was detected between these biomes (FST = 0.171, P > 0.05) and in agreement with its large geographical scale and ecological disparity between Atlantic Rainforest and Pantanal, most of the variation was detected within the isolates from the Pantanal biome (Table 3)

  • Bayesian clustering analysis in STRUCTURE showed no evidence of genetic structure, by which the T. terrestris isolates lacked enough genetic variation to be assigned into a particular genetic cluster (Fig. 3a, b)

Read more

Summary

Introduction

A considerable amount of evidence has favored ecological host-fitting, rather than coevolution, as the main mechanism responsible for trypanosome divergence. Beyond the study of human patho‐ genic trypanosomes, the genetic basis of host specificity among trypanosomes isolated from forest-inhabiting hosts remains largely unknown. A clear understanding of host–parasite relationships and the mechanisms by which parasites are adapted to their hosts is of paramount importance to public health, because emerging infectious diseases are frequently the result of host-switching, i.e. evolutionary change of host specificity of a parasite [1,2,3]. Emerging diseases can be the result of the antagonistic coevolution between hosts and parasites, whereby hosts and pathogens display increased resistance and virulence in response to each other over time [4]. Thereby, combining micro- and macroevolutionary levels of genetic variation when studying parasite populations can shed light on which process is dominant, i.e. coevolution, host-switching, or a combination of both [10,11,12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call