Abstract

Tobacco rattle virus (TRV) is an important soil-borne virus of potato that is transmitted by stubby-root nematodes. TRV causes corky ringspot, a tuber disease of economic importance to potato production. Utilizing protein-coding regions of the whole genome and a range of computational tools, the genetic diversity, and population structure of TRV isolates from several potato-growing regions (Colorado, Idaho, Indiana, Minnesota, Nebraska, North Dakota, and Washington State) in the USA were determined. Phylogenetic analyses based on RNA2 nucleotide sequences, the coat protein (CP) and nematode transmission (2b) genes, showed geographical clustering of USA isolates with previously known American isolates, while European isolates grouped in a distinct cluster. This was corroborated by the observed genetic differentiation and infrequent gene flow between American and European isolates. Low genetic diversity was revealed among American isolates compared to European isolates. Phylogenetic clustering based on RNA1 genes (RdRp, RdRp-RT, and 1a) were all largely incongruent to that of 1b gene (virus suppressor of RNA silencing). This genetic incongruence suggested the influence of recombination. Furthermore, the RdRp, RdRp-RT, and 1a genes were predicted to be more conserved and under negative selection, while the 1b gene was less constrained. Different evolutionary lineages between TRV RNA1 and RNA2 genomic segments were revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.