Abstract

The bacterium Spiroplasma ixodetis is a maternally inherited endosymbiont primarily described from ticks but also found widespread across other arthropods. While it has been identified as a male-killing agent in some insect species, the consequences of infection with S. ixodetis in ticks are entirely unknown, and it is unclear how this endosymbiont spreads across tick species. Here, we have investigated this aspect through the examination of the diversity and evolutionary history of S. ixodetis infections in 12 tick species and 12 other arthropod species. Using a multi-locus typing approach, we identified that ticks harbor a substantial diversity of divergent S. ixodetis strains. Phylogenetic investigations revealed that these S. ixodetis strains do not cluster within a tick-specific subclade but rather exhibit distinct evolutionary origins. In their past, these strains have undergone repeated horizontal transfers between ticks and other arthropods, including aphids and flies. This diversity pattern strongly suggests that maternal inheritance and horizontal transfers are key drivers of S. ixodetis spread, dictating global incidence of infections across tick communities. We do not, however, detect evidence of S. ixodetis-based male-killing since we observed that infections were widely present in both males and females across populations of the African blue tick Rhipicephalus decoloratus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.