Abstract

BackgroundPolymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional efficiency of the protein. We recently used haplotype-specific sequencing to identify 23 MBL2 haplotypes, associated with enhanced susceptibility to several diseases.ResultsIn this work, we applied the same method in 288 and 470 chromosomes from Gabonese and European adults, respectively, and found three new haplotypes in the last group. We propose a phylogenetic nomenclature to standardize MBL2 studies and found two major phylogenetic branches due to six strongly linked polymorphisms associated with high MBL production. They presented high Fst values and were imbedded in regions with high nucleotide diversity and significant Tajima's D values. Compared to others using small sample sizes and unphased genotypic data, we found differences in haplotyping, frequency estimation, Fu and Li's D* and Fst results.ConclusionUsing extensive testing for selective neutrality, we confirmed that stochastic evolutionary factors have had a major role in shaping this polymorphic gene worldwide.

Highlights

  • Polymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional efficiency of the protein

  • To uncover the selective role diseases could have exerted on the MBL2 polymorphism, we evaluated the MBL2 promoter and exon 1 region from 856 chromosomes of Gabonese adults and children [2], as well as from 470 chromosomes belonging to individuals of European descent, and compared it with previously published data

  • The *1D1-h haplotype, which we found with 3% frequency in this population, was found by others with comparable frequencies (1.6 - 4.2%) in the Mbuti Pygmy, Nigerian Yoruba and Somali populations [19]. *1J1-h was found with 1.6% and 0.8% frequencies in Tanzanian Chagga and in the Somali groups, respectively. *2A1-h and *3A1-h are intermediate between P and Q containing haplotypes and most probably reminiscent of the ancient original MBL2 haplotype [2]

Read more

Summary

Introduction

Polymorphisms of the mannose-binding lectin gene (MBL2) affect the concentration and functional efficiency of the protein. MBL (mannose-binding lectin) is an important component of innate immunity and a central recognition molecule of the lectin pathway of complement, which probably represents the most ancient pathway of complement activation [1]. It binds to an array of carbohydrates such as D-mannose and N-acetyl-D-glucosamine on the surface of pathogens and directly opsonizes the microorganism for phagocytosis or activates the complement system via interaction with MBL-associated serine proteases (MASP-1, -2, -3 and Map). The MBL2 genetic polymorphism is responsible for the very common and widespread variation of circulating levels of MBL oligomers and of functional activity of the protein in the human species.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call