Abstract

Phylogenetic networks model the evolutionary history of sets of organisms when events such as hybrid speciation and horizontal gene transfer occur. In spite of their widely acknowledged importance in evolutionary biology, phylogenetic networks have so far been studied mostly for specific data sets. We present a general definition of phylogenetic networks in terms of directed acyclic graphs (DAGs) and a set of conditions. Further, we distinguish between model networks and reconstructible ones and characterize the effect of extinction and taxon sampling on the reconstructibility of the network. Simulation studies are a standard technique for assessing the performance of phylogenetic methods. A main step in such studies entails quantifying the topological error between the model and inferred phylogenies. While many measures of tree topological accuracy have been proposed, none exist for phylogenetic networks. Previously, we proposed the first such measure, which applied only to a restricted class of networks. In this paper, we extend that measure to apply to all networks, and prove that it is a metric on the space of phylogenetic networks. Our results allow for the systematic study of existing network methods, and for the design of new accurate ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.