Abstract

BackgroundThe purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella.ResultsAs lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers.ConclusionsApplication of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of them detect non-oral species and phylogenetic groups of importance in a variety of medical conditions and the food industry.

Highlights

  • The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella

  • Probe design In this study we relied for probe design on the species and phylotype description provided by the human oral microbiome database (HOMD) [11], which comprises a collection of 16S rRNA sequences of both cultivable and so far non-cultivable taxa representing the currently known width of bacterial diversity found in the human oral cavity [12]

  • In this study we have described the application of 20 new phylogenetic group- or species-specific oligonucleotide probes for the single-cell detection of oral lactic acid producing bacteria (LAB) in various clinical or experimental biofilms

Read more

Summary

Introduction

The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Few probes for the detection and quantification by fluorescent in situ hybridization (FISH) of oral LAB species have been described so far [9,10]. We report the design, characterization and pilot evaluation of probes recognizing major phylogenetic clusters or species of oral lactobacilli, the Abiotrophia/Granulicatella group, and a few taxa of oral streptococci. Applied for validation to in situ formed supragingival biofilms, the probes detected high levels of both mitis group streptococci and Abiotrophia/Granulicatella species, and identified strains of Lactobacillus fermentum and the Lactobacillus casei group

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call