Abstract

The Australian scincid genus Pseudemoia comprises six morphologically similar species restricted to temperate south-eastern Australia. Due to the high degree of morphological conservatism, phylogenetic relationships and taxonomic status within the Pseudemoia entrecasteauxii complex (comprising the nominal species P. entrecasteauxii, P. cryodroma, and P. pagenstecheri) remains unresolved. To further investigate the phylogenetic relationships and taxonomic status of Pseudemoia spp., and to test the hypothesis that P. cryodroma evolved from hybridization between P. entrecasteauxii and P. pagenstecheri, we sequenced one mitochondrial locus (ND4) and five nuclear loci (β-globin, LGMN, PRLR, Rhodopsin, RPS8). While we find strong support for the monophyly of the P. entrecasteauxii complex, there exists marked incongruence between the mitochondrial and nuclear markers, particularly in regards to the high altitude specialist, P. cryodroma. The most parsimonious explanation of this discordance is historic mitochondrial introgression, although a hybrid origin for P. cryodroma cannot be completely rejected. Within P. pagenstecheri sensu lato, we identified a strongly supported, highly divergent yet morphologically cryptic lineage restricted to northern New South Wales. Although more weakly supported by the nuDNA, we also identified a second geographically distinct lineage of P. pagenstecheri s.l., which may warrant separate conservation management. Our study reveals a more complex evolutionary history of the genus Pseudemoia than previously appreciated and contributes to our understanding of the biogeography and evolution of Australian mesic zone fauna.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call