Abstract
The classic quantitative measure of phylogenetic diversity (PD) has been used to address problems in conservation biology, microbial ecology, and evolutionary biology. PD is the minimum total length of the branches in a phylogeny required to cover a specified set of taxa on the phylogeny. A general goal in the application of PD has been identifying a set of taxa of size k that maximize PD on a given phylogeny; this has been mirrored in active research to develop efficient algorithms for the problem. Other descriptive statistics, such as the minimum PD, average PD, and standard deviation of PD, can provide invaluable insight into the distribution of PD across a phylogeny (relative to a fixed value of k). However, there has been limited or no research on computing these statistics, especially when required for each clade in a phylogeny, enabling direct comparisons of PD between clades. We introduce efficient algorithms for computing PD and the associated descriptive statistics for a given phylogeny and each of its clades. In simulation studies, we demonstrate the ability of our algorithms to analyze large-scale phylogenies with applications in ecology and evolutionary biology. The software is available at https://github.com/flu-crew/PD_stats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.