Abstract

AbstractLand degradation is a leading cause of biodiversity loss, and understanding its consequences on freshwater ecosystems remains a priority for improving the effectiveness of restoration practices and ecosystem assessments. Freshwater monitoring programs use macroinvertebrates to assess the biotic effects of degradation and management actions, often using the ratio of observed to expected taxa at a site—O/E—for this purpose. Despite the power of the O/E approach, large amounts of data are required to generate an expectation and it can be difficult to define a threshold value for degraded sites. An alternative assessment tool is phylogenetic diversity, which is widely used in academic biology but rarely applied in management despite empirical correlations between phylogenetic diversity and management targets such as ecosystem structure and function. Here, we use macroinvertebrate data from 1400 watersheds, collected since 1998, to evaluate the potential for phylogenetic metrics to inform evaluations of management practices. These watersheds were chosen because their low disturbance levels and high habitat heterogeneity have made them problematic to assess with O/E. Phylogenetic diversity detected degradation of assemblages and was sensitive enough to parse impacts to inform management actions. This is particularly notable given the phylogenetic metrics, unlike O/E, did not require additional “baseline” data. Site disturbance and broader environmental drivers strongly predicted site phylogenetic structure, providing management objectives to increase site quality. We call on others to consider using phylogenetic diversity to complement existing O/E schemes, particularly in systems where O/E is insufficient to prioritize management objectives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call