Abstract
During the last two years, greenhouse cultivation of rose (Rosa spp.) in the Netherlands has been challenged by an uncommon bacterial disease. Affected plants suffered from chlorosis, stunting, wilting, and necrosis. The bacterial isolates obtained from the different Rosa spp. cultivars were all identified as phylotype I, sequevar 33 from the 'Ralstonia solanacearum species complex' (RSSC), actually reclassified as Ralstonia pseudosolanacearum. The work in this paper considers the genetic diversity and the phylogenetic position of 129 R. pseudosolanacearum isolates from the outbreak. This was assessed by AFLP based on four different primer combinations and MLP using partial sequences of the egl, mutS, and fliC genes. The AFLP revealed identical profiles for all the isolates, irrespective of their association with Rosa sp. propagating material, Rosa spp. plants for cut flowers, or water used in the different greenhouse cultivations. These AFLP profiles were unique and diverged from profiles of all other reference isolates in the RSSC included. Furthermore, MLP on egl, fliC, and mutS gene sequences clearly demonstrated that all R. pseudosolanacearum isolates clustered in phylotype I, as a distinct monophyletic group. Interestingly, this monophyletic group also included phylotype I strain Rs-09-161 from eggplant (Solanum melongena), isolated in 2009 in India. AFLP and MLP were both efficient in revealing the genetic divergence from the RSSC isolates included. The phylogenetic tree constructed from the AFLP profiles was, in general, in agreement with the one obtained from MLP. Both phylogenetic trees displayed a similar clustering, supported by high posterior probabilities. Both methodologies clearly demonstrated that the R. pseudosolanacearum isolates from Rosa spp. grouped in a monophyletic group inside phylotype I, with a particular correspondence to a strain present in India, as revealed in MLP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.