Abstract

Carbamoyl phosphate synthetase (CPS) catalyses the formation of carbamoyl phosphate from glutamine or ammonia, bicarbonate and ATP. There are three different isoforms of CPS that play vital roles in two metabolic pathways, pyrimidine biosynthesis (CPS II) and arginine/urea biosynthesis (CPS I and CPS III). Gene duplication has been proposed as the evolutionary mechanism creating this gene family with CPS II likely giving rise to the CPS I/III clade. In the evolutionary history of this gene family it is still undetermined when CPS I diverged from CPS III on the path to terrestriality in the vertebrates. Transitional organisms such as lungfishes are of particular interest because they are capable of respiring via gills and with lungs and therefore can be found in both aquatic and terrestrial environments. Notably, enzymatic characterization of the mitochondrial CPS isoforms in this transitional group has not led to clear conclusions. In order to determine which CPS isoform is present in transitional animals, we examined partial sequences for liver CPS amplified from five species of lungfish, and a larger fragment of CPS from one lungfish species ( Protopterus annectens) and compared them to CPS isoforms from other fish and mammals. Enzyme activities for P. annectens liver were also examined. While enzyme activities did not yield a clear distinction between isoforms (virtually equal activities were obtained for either CPS I or III), CPS sequences from the lungfishes formed a monophyletic clade within the CPS I clade and separate from the CPS III clade of other vertebrates. This finding implies that the mitochondrial isoform of CPS in lungfish is derived from CPS I and is likely to have a physiological function similar to CPS I. This finding is important because it supports the hypothesis that lungfish employ a urea cycle similar to terrestrial air-breathing vertebrates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.