Abstract

BackgroundThe origin of turtles and crocodiles and their easily recognized body forms dates to the Triassic and Jurassic. Despite their long-term success, extant species diversity is low, and endangerment is extremely high compared to other terrestrial vertebrate groups, with ~ 65% of ~ 25 crocodilian and ~ 360 turtle species now threatened by exploitation and habitat loss. Here, we combine available molecular and morphological evidence with statistical and machine learning algorithms to present a phylogenetically informed, comprehensive assessment of diversification, threat status, and evolutionary distinctiveness of all extant species.ResultsIn contrast to other terrestrial vertebrates and their own diversity in the fossil record, the recent extant lineages of turtles and crocodilians have not experienced any global mass extinctions or lineage-wide shifts in diversification rate or body-size evolution over time. We predict threat statuses for 114 as-yet unassessed or data-deficient species and identify a concentration of threatened turtles and crocodilians in South and Southeast Asia, western Africa, and the eastern Amazon. We find that unlike other terrestrial vertebrate groups, extinction risk increases with evolutionary distinctiveness: a disproportionate amount of phylogenetic diversity is concentrated in evolutionarily isolated, at-risk taxa, particularly those with small geographic ranges. Our findings highlight the important role of geographic determinants of extinction risk, particularly those resulting from anthropogenic habitat-disturbance, which affect species across body sizes and ecologies.ConclusionsExtant turtles and crocodilians maintain unique, conserved morphologies which make them globally recognizable. Many species are threatened due to exploitation and global change. We use taxonomically complete, dated molecular phylogenies and various approaches to produce a comprehensive assessment of threat status and evolutionary distinctiveness of both groups. Neither group exhibits significant overall shifts in diversification rate or body-size evolution, or any signature of global mass extinctions in recent, extant lineages. However, the most evolutionarily distinct species tend to be the most threatened, and species richness and extinction risk are centered in areas of high anthropogenic disturbance, particularly South and Southeast Asia. Range size is the strongest predictor of threat, and a disproportionate amount of evolutionary diversity is at risk of imminent extinction.

Highlights

  • IntroductionCrocodilians are famous for their extraordinary size (up to 6 m and 1000 kg), long snouts and tails, and bony armor under the skin; and turtles for their bony or cartilaginous shell, and the size of some marine and terrestrial species (1.4 m and 400 kg on land, 2 m and 1000 kg in the sea)

  • The origin of turtles and crocodiles and their recognized body forms dates to the Triassic and Jurassic

  • We use taxonomically complete, dated molecular phylogenies and various approaches to produce a comprehensive assessment of threat status and evolutionary distinctiveness of both groups

Read more

Summary

Introduction

Crocodilians are famous for their extraordinary size (up to 6 m and 1000 kg), long snouts and tails, and bony armor under the skin; and turtles for their bony or cartilaginous shell, and the size of some marine and terrestrial species (1.4 m and 400 kg on land, 2 m and 1000 kg in the sea) Both groups are well-represented in the fossil record and previously attained even more massive sizes and incredible diversities in shape that are not reflected in present-day species [2]. Crocodyliforms such as Sarcosuchus [3] grew up to 12 m and 8000 kg, while the extinct turtle Archelon [4] reached 5 m and 2200 kg. In comparison to their terrestrial vertebrate relatives (birds, mammals, reptiles, and amphibians), both groups have very few living species (~ 360 turtles and ~ 25 crocodilians), and a large proportion of extant species are both highly evolutionarily distinct [5] and highly endangered [6, 7], with the Madagascan Big-Headed Turtle (Erymnochelys) having the highest EDGE score of any terrestrial vertebrate [5]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.