Abstract

To understand the molecular mechanisms that contribute to the stress responses of the important foodborne pathogen Listeria monocytogenes, we collected 139 strains (meat, n = 25; dairy, n = 10; vegetable, n = 8; seafood, n = 14; mixed food, n = 4; and food processing environments, n = 78), mostly isolated in Ireland, and subjected them to whole-genome sequencing. These strains were compared to 25 Irish clinical isolates and 4 well-studied reference strains. Core genome and pan-genome analysis confirmed a highly clonal and deeply branched population structure. Multilocus sequence typing showed that this collection contained a diverse range of strains from L. monocytogenes lineages I and II. Several groups of isolates with highly similar genome content were traced to single or multiple food business operators, providing evidence of strain persistence or prevalence, respectively. Phenotypic screening assays for tolerance to salt stress and resistance to acid stress revealed variants within several clonal complexes that were phenotypically distinct. Five of these phenotypic outliers were found to carry mutations in the sigB operon, which encodes the stress-inducible sigma factor sigma B. Transcriptional analysis confirmed that three of the strains that carried mutations in sigB, rsbV, or rsbU had reduced SigB activity, as predicted. These strains exhibited increased tolerance to salt stress and displayed decreased resistance to low pH stress. Overall, this study shows that loss-of-function mutations in the sigB operon are comparatively common in field isolates, probably reflecting the cost of the general stress response to reproductive fitness in this pathogen. IMPORTANCE The bacterial foodborne pathogen Listeria monocytogenes frequently contaminates various categories of food products and is able to cause life-threatening infections when ingested by humans. Thus, it is important to control the growth of this bacterium in food by understanding the mechanisms that allow its proliferation under suboptimal conditions. In this study, intraspecies heterogeneity in stress response was observed across a collection consisting of mainly Irish L. monocytogenes isolates. Through comparisons of genome sequence and phenotypes observed, we identified three strains with impairment of the general stress response regulator SigB. Two of these strains are used widely in food challenge studies for evaluating the growth potential of L. monocytogenes. Given that loss of SigB function is associated with atypical phenotypic properties, the use of these strains in food challenge studies should be re-evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call