Abstract

In eukaryotes, N6-methyladenosine (m6A) RNA modification plays a crucial role in governing the fate of RNA molecules and has been linked to various developmental processes. However, the phyletic distribution and functions of genetic factors responsible for m6A modification remain largely unexplored in fungi. To get insights into the evolution of m6A machineries, we reconstructed global phylogenies of potential m6A writers, readers, and erasers in fungi. Substantial copy number variations were observed, ranging from up to five m6A writers in early-diverging fungi to a single copy in the subphylum Pezizomycotina, which primarily comprises filamentous fungi. To characterize m6A factors in a phytopathogenic fungus Fusarium graminearum, we generated knockout mutants lacking potential m6A factors including the sole m6A writer MTA1. However, the resulting knockouts did not exhibit any noticeable phenotypic changes during vegetative and sexual growth stages. As obtaining a homozygous knockout lacking MTA1 was likely hindered by its essential role, we generated MTA1-overexpressing strains (MTA1-OE). The MTA1-OE5 strain showed delayed conidial germination and reduced hyphal branching, suggesting its involvement during vegetative growth. Consistent with these findings, the expression levels of MTA1 and a potential m6A reader YTH1 were dramatically induced in germinating conidia, followed by the expression of potential m6A erasers at later vegetative stages. Several genes including transcription factors, transporters, and various enzymes were found to be significantly upregulated and downregulated in the MTA1-OE5 strain. Overall, our study highlights the functional importance of the m6A methylation during conidial germination in F. graminearum and provides a foundation for future investigations into m6A modification sites in filamentous fungi.IMPORTANCEN6-methyladenosine (m6A) RNA methylation is a reversible posttranscriptional modification that regulates RNA function and plays a crucial role in diverse developmental processes. This study addresses the knowledge gap regarding phyletic distribution and functions of m6A factors in fungi. The identification of copy number variations among fungal groups enriches our knowledge regarding the evolution of m6A machinery in fungi. Functional characterization of m6A factors in a phytopathogenic filamentous fungus Fusarium graminearum provides insights into the essential role of the m6A writer MTA1 in conidial germination and hyphal branching. The observed effects of overexpressing MTA1 on fungal growth and gene expression patterns of m6A factors throughout the life cycle of F. graminearum further underscore the importance of m6A modification in conidial germination. Overall, this study significantly advances our understanding of m6A modification in fungi, paving the way for future research into its roles in filamentous growth and potential applications in disease control.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.