Abstract

Phylogenetic relationships of the nucleotide binding site (NBS)-encoding resistance gene homologues (RGHs) among 12 species in five genera of Rosaceae fruit crops were evaluated. A total of 228 Rosaceous RGHs were deeply separated into two distinct clades, designated as TIR (sequences within this clade containing a Toll Interleukin-1 Receptor domain) and NonTIR (sequences lacking a TIR domain). Most Rosaceous RGH genes were phylogenetically distinct from Arabidopsis, Rice or Pine genes, except for a few Rosaceous members which grouped closely with Arabidopsis genes. Within Rosaceae, sequences from multiple species were often phylogenetically clustered together, forming heterogenous groups, however, apple- and chestnut rose-specific groups really exist. Gene duplication followed by sequence divergence were proposed as the mode for the evolution of a large number of distantly or closely related RGH genes in Rosaceae, and this mode may play a role in the generation of new resistance specificity. Positively selected sites within NBS-coding region were detected and thus nucleotide variation within NBS domain may function in determining disease resistance specificity. This study also discusses the synteny of a genomic region that encompass powdery mildew resistance locus among Malus, Prunus and Rosa, which may have potential use for fruit tree disease breeding and important gene cloning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.