Abstract

The objective of this study was to explore the evolutionary history of the morphologically recognized filamentous ascomycete Neurospora tetrasperma, and to reveal the genetic and reproductive relationships among its individuals and populations. We applied both phylogenetic and biological species recognition to a collection of strains representing the geographic and genetic diversity of N. tetrasperma. First, we were able to confirm a monophyletic origin of N. tetrasperma. Furthermore, we found nine phylogenetic species within the morphospecies. When using the traditional broad biological species recognition all investigated strains of N. tetrasperma constituted a single biological species. In contrast, when using a quantitative measurement of the reproductive success, incorporating characters such as viability and fertility of offspring, we found a high congruence between the phylogenetic and biological species recognition. Taken together, phylogenetically and biologically defined groups of individuals exist in N. tetrasperma, and these should be taken into account in future studies of its life history traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call