Abstract

BackgroundThe phylogeny of Arthropoda is still a matter of harsh debate among systematists, and significant disagreement exists between morphological and molecular studies. In particular, while the taxon joining hexapods and crustaceans (the Pancrustacea) is now widely accepted among zoologists, the relationships among its basal lineages, and particularly the supposed reciprocal paraphyly of Crustacea and Hexapoda, continues to represent a challenge. Several genes, as well as different molecular markers, have been used to tackle this problem in molecular phylogenetic studies, with the mitochondrial DNA being one of the molecules of choice. In this study, we have assembled the largest data set available so far for Pancrustacea, consisting of 100 complete (or almost complete) sequences of mitochondrial genomes. After removal of unalignable sequence regions and highly rearranged genomes, we used nucleotide and inferred amino acid sequences of the 13 protein coding genes to reconstruct the phylogenetic relationships among major lineages of Pancrustacea. The analysis was performed with Bayesian inference, and for the amino acid sequences a new, Pancrustacea-specific, matrix of amino acid replacement was developed and used in this study.ResultsTwo largely congruent trees were obtained from the analysis of nucleotide and amino acid datasets. In particular, the best tree obtained based on the new matrix of amino acid replacement (MtPan) was preferred over those obtained using previously available matrices (MtArt and MtRev) because of its higher likelihood score. The most remarkable result is the reciprocal paraphyly of Hexapoda and Crustacea, with some lineages of crustaceans (namely the Malacostraca, Cephalocarida and, possibly, the Branchiopoda) being more closely related to the Insecta s.s. (Ectognatha) than two orders of basal hexapods, Collembola and Diplura. Our results confirm that the mitochondrial genome, unlike analyses based on morphological data or nuclear genes, consistently supports the non monophyly of Hexapoda.ConclusionThe finding of the reciprocal paraphyly of Hexapoda and Crustacea suggests an evolutionary scenario in which the acquisition of the hexapod condition may have occurred several times independently in lineages descending from different crustacean-like ancestors, possibly as a consequence of the process of terrestrialization. If this hypothesis was confirmed, we should therefore re-think our interpretation of the evolution of the Arthropoda, where terrestrialization may have led to the acquisition of similar anatomical features by convergence. At the same time, the disagreement between reconstructions based on morphological, nuclear and mitochondrial data sets seems to remain, despite the use of larger data sets and more powerful analytical methods.

Highlights

  • The phylogeny of Arthropoda is still a matter of harsh debate among systematists, and significant disagreement exists between morphological and molecular studies

  • Phylogenetic analysis of the nucleotide data set In the Bayesian analysis of the nucleotide data set (1st and 2nd codon positions only) stationarity was found to be reached before 50,000 generations, and 5% of sampled trees (500) were removed as the burnin of the analysis

  • The differences are generally concentrated in the deepest nodes, rather than the most apical ones. This suggests that relationships among basal lineages of Pancrustacea, based on the amino acid sequences of mt protein coding genes (PCGs), are still quite unstable, and that the choice of one topology over another may be dependent on the efficiency of the algorithm to explore the likelihood space, as well as on the alignment, data and taxon choice, and the matrix of amino acid replacement

Read more

Summary

Introduction

The phylogeny of Arthropoda is still a matter of harsh debate among systematists, and significant disagreement exists between morphological and molecular studies. Mostly based on morphological evidence, emphasized the affinities between Hexapoda and Myriapoda (= Atelocerata), recent molecular data consistently indicate crustaceans (or some of their lineages) as the sister group of the hexapods (Pancrustacea, sensu [3], or Tetraconata, sensu [4]) [5,6,7,8,9,10,11], with myriapods emerging earlier from the arthropod tree, or else associated with the chelicerates (Paradoxopoda, sensu [12], or Myriochelata sensu [10]). This has fostered a reappraisal of the morphological evidence [13,14], and the "Pancrustacea" hypothesis has gained growing credibility among the community of arthropod systematists

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call